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Abstract for Handbook of Space Resources Ch 18 Ice Resource Mapping on Mars

This chapter describes the rationale for considering shallowly buried  (0 – > 5 m depth) water ice
in the mid-latitude of Mars as a resource to support future human missions, and it describes a
NASA-funded effort to map that ice with existing orbital remote-sensing data. In recent decades,
numerous studies have used various data sets to investigate the presence and stability of water
ice in the Martian shallow subsurface, with a view toward understanding the planet’s recent
climate history. As part of a renewed effort to prepare for human Mars missions, NASA has
undertaken a more resource-focused approach. Here we describe the Mars Subsurface Water
Ice Mapping (SWIM) Team’s efforts to characterize the distribution of buried water ice resources
across all longitudes from 60ºS to 60ºN latitude through the integration of multiple data sets.
Deriving composite measures for the presence of accessible ice from a diverse range of remote
sensing techniques with unique resolutions and caveats is a challenging problem. To enable
data synthesis, the team developed a methodology that assigns values of ice consistency for
mapped detections of hydrogen from a neutron spectrometer, thermal behavior from various
thermal spectrometers, multiscale geomorphology from imagery and elevation data, and surface
and subsurface echoes from a radar sounder. Faced with diverse sensing depths and footprints
for these datasets, the team has been pursuing an optimal approach to best represent
multi-dataset ice consistency. The current formulation includes the use of weighting factors
tuned to depth zones of interest for resource extraction. In the absence of dedicated ground
truth data, the validity of the team’s efforts is assessed by comparing the maps to the locations
of fresh, ice-exposing impacts. The highest ice-consistency values occur within discrete zones
poleward of ~40º latitude, where ice is relatively shallow, but positive values extend well into the
~20º–30º latitude zone, which is preferable for landing sites due to engineering considerations.
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1.Ice as a Critical Resource for Human Missions 

1.1.The Resource Value of Ice on Mars 

In the effort to deliver humans to the surface of Mars and return them safely to Earth, current 
propulsion technology means that mass represents the ultimate premium for cost. Thus, any 
such endeavor is made much more feasible by leveraging all available in situ resources. The 
most valuable Martian resource for “living off the land” is water, which, when combined with 
atmospheric carbon dioxide, can provide methane as a fuel to sustain an outpost and for the 
return to Earth (Ash et al., 1978; Zubrin et al., 1991). Water also represents one of the most 
important ingredients of life support, including as a source of oxygen for breathing.  

Mars has plentiful surface water ice, with multi-kilometer-thick ice caps in the form of the north 
and south polar layered deposits (NPLD/SPLD) and widespread shallow (< 1 m depth) ground 
ice in polar and subpolar regions. However, these sources of water are at latitudes that are not 
feasible for the initial human missions to the Red Planet. The higher solar radiation and 
corresponding manageable thermal environment and length of night offered by the lower 
latitudes are critical to mission success. In addition, low latitudes reduce energy needed for 
landing and launch from the surface for the return trip to Earth. Lower elevations are also 
desired, as they provide more atmosphere to slow down a spacecraft prior to a propulsive 
landing. Thus, locating the lowest-elevation, lowest-latitude sites that have significant water 
deposits is a key consideration in selecting future human landing sites on Mars. 

1.2.Ice Stability on Mars 

Numerical modeling of the stability of ground ice on Mars dates to the 1960s, when Leighton & 
Murray (1966) found that subsurface ice should be present in the higher latitudes, based on 
what was known at the time about Martian surface properties and temperature variations. Since 
that time, progressive improvements in our knowledge about those properties have been made, 
largely due to a series of ever-more-capable spacecraft in orbit and on the surface of Mars. The 
arrival of Mars Global Surveyor (MGS) and its Thermal Emission Spectrometer (TES) at Mars in 
the late 1990s (Christensen et al., 2001) precipitated a significant improvement in the accuracy 
and timespan of observations of temperatures and their variation over Martian seasons. 
Analyses of those variations allowed researchers to more accurately ascertain the stability and 
presence of current-day ice beneath a veneer of soil in high-latitude zones that extend 
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equatorward to about 50° latitude in each hemisphere (e.g., Mellon et al., 2004; Putzig & Mellon, 
2007).  

A few years into the MGS mission, the 2001 Mars Odyssey spacecraft arrived with the Mars 
Orbiter Neutron Spectrometer (MONS) onboard, allowing direct detection of hydrogen within the 
upper half meter of the subsurface. While lower concentrations of hydrogen likely indicate only 
hydrated minerals, in places where the fraction of hydrogen detected exceeds about 25%, the 
only plausible explanation is water ice (e.g., Feldman et al., 2002; Pathare et al., 2018). Thus, 
the neutron data provided confirmation of ground ice at high latitudes.  

Subsequently, images from the High Resolution Imaging Science Experiment (HiRISE) camera 
and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars 
Reconnaissance Orbiter (MRO) that arrived at Mars in 2006 have confirmed the presence of 
shallow, high-purity ground ice, not only at those higher latitudes but also extending down to a 
latitude of 39°N, via the discovery of new impact craters that expose and excavate ice within a 
meter of the surface (Byrne et al. 2009; Dundas et al. 2014; 2021). While the depths and 
latitudinal profiles observed by MONS and in the icy craters are broadly consistent with the 
general expectations based on theoretical models of stability, there are excursions of shallow 
ice extending closer to the equator than expected under current climate conditions. The 
existence of ice, out of equilibrium with the current climate, suggests the preservation of ice 
deposited in the mid-latitudes during previous climatic episodes has occurred. Mid-latitude 
remnant ice therefore represents an important resource for future missions.  

2.The Mars Subsurface Water Ice Mapping (SWIM) Project 

2.1.Project Overview 

In 2015, NASA held a workshop in Houston, Texas, to begin consideration of landing sites for 
human missions to the surface of Mars. Workshop participants were instructed to evaluate 100-
km-diameter exploration zones that would encompass the actual spacecraft landing site, human 
habitation facilities, features of scientific interest, and resources for generating fuel to sustain 
on-ground activities and supply an Earth-return vehicle. One outcome of the workshop was the 
realization that water, in the form of either hydrated minerals or buried water ice, represents an 
especially critical resource that had yet to be identified and assessed at the level needed to fully 
support landing-site planning. To address this need, NASA held a gathering of Mars scientists 
studying ice and hydrated minerals during the 2016 Fall American Geophysical Union Meeting 
in San Francisco to discuss the extent to which current data could help address knowledge 
gaps concerning water resources on Mars. The group identified a number of datasets and 
methods that would be useful for mapping hydrated minerals and buried mid-latitude ice, and 
NASA used this information to produce a request for proposals, issued in June 2017. After 
reviews, NASA selected and funded four proposals, two focused on the mapping of hydrated 
minerals and two on the mapping of buried water ice. The latter studies were limited to a swath 
of ~10° longitude in the Arcadia Planitia region, extending from the equator to 60°N, as NASA 
intended to evaluate the success of the ice-mapping methods proposed prior to broadening the 
study region (Fig. 18.2.1). These pilot studies, which began in late 2017 and early 2018, aimed 
to assess ice presence and map its distribution across the swath. Putzig et al. (2017) had 
proposed to use a combination of thermal data and modeling with radar observations of 
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subsurface interfaces, whereas Morgan & Campbell (2017) had proposed to use a combination 
of geomorphological data and radar observations of near-surface properties.  

 

Figure 18.2.1. Map of the SWIM study areas overlain above Martian topography. Blue box at 
0°N to 60°N, 190°E to 210°E is the pilot study region. Red boxes in the northern hemisphere 
(-70°E to 225°E) delineate the 2019 study region. The remainder of the map is the 2020 study 
region, subject to cut-off at +1 km elevation (mask highlighted in black). MOLA basemap credit: 
NASA/JPL/USGS. 

Realizing the highly complementary nature of the two pilot studies, the teams proposed during a 
joint interim review at NASA Headquarters in July 2018 to merge their investigations in a larger 
study area. NASA agreed to the merger and to an expanded study area in a project extension 
entitled Subsurface Water Ice Mapping (SWIM) in the Northern Hemisphere of Mars (Fig. 
18.2.1), which began in September 2018. For this first ‘2019’ phase of the Mars SWIM project, 
we added additional techniques, including the use of neutron spectrometer data (§18.2.2.1), and 
we expanded the combined team to meet an increased workload under a seven-month timeline.  

Our team began developing a means to present a coherent view of ice presence as informed by 
the collection of data and techniques, which we termed “ice consistency,” C. For each 
technique, we came up with a means to evaluate how consistent each dataset at a given 
location is with either the absence or the presence of ice, assigning values between -1 (wholly 
inconsistent with ice) and +1 (wholly consistent with ice). To present an overall assessment of 
ice consistency with all relevant data, we introduced the SWIM Equation, wherein the technique-
specific ice-consistency values are combined into a composite value for each map pixel. In the 
first SWIM phase, we chose to use a simple averaging, with each technique’s ice consistency 
weighted equally with the others (§18.2.3). We presented results from the first study phase in a 
series of presentations at the 2019 Lunar and Planetary Science Conference in The Woodlands, 
Texas, and in a Nature Astronomy publication by Morgan et al. (2021). 

Upon completion of the first SWIM study phase, NASA asked us to propose an extension to 
further refine our methods and expand the study to include all other areas below +1 km 
elevation and equatorward of 60° latitude in both hemispheres (Fig. 18.2.1). In this second 
‘2020’ phase of the Mars SWIM project, we made substantial refinements to our techniques, 
including the incorporation of a new thermal dataset and finer resolution geomorphic mapping 
(§18.2.2). In addition, we replaced the single SWIM Equation with a set of equations for three 
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distinct depth zones, weighting the terms in each equation by the sensing depths of the 
respective techniques. Realizing that this means of producing composite assessments of ice 
has some limitations, such as not allowing a quantitative treatment of uncertainties associated 
with each technique, we embarked on an exploration of an alternative presentation of our 
composite results through the use of Bayesian statistics (§18.2.3). Among other capabilities, this 
alternative approach allowed the team to consider ice presence in terms of probability, tunable 
for given depths or targeted concentrations of ice. 

2.2.Spacecraft Datasets and Processing Techniques 

2.2.1.Neutron Spectrometer Data 

Our ice-consistency values derived from neutron spectroscopy are based on Mars Odyssey 
Neutron Spectrometer (MONS) observations of fast, thermal, and epithermal neutron fluxes at 
the top of the Martian atmosphere, which are highly sensitive to the presence of hydrogen (and, 
by extension, H2O ice) within the upper half meter of the Martian subsurface (Feldman et al., 
2002). We employed the global two-layer Water Equivalent Hydrogen (WEH) maps of Pathare 
et al. (2018), who refined the crossover approach of Feldman et al. (2011) to calculate the WEH 
abundances of an upper layer of weight fraction Wup with thickness D overlying a semi-infinite 
lower layer of weight fraction Wdn. For the SWIM project, we expressed the positive and 
negative ranges of neutron ice consistency CN as linear functions of lower layer WEH 
abundance, Wdn: 

  CN = 1 (Wdn!"!#$%&!'(!!0 (Wdn = 10%) 
  CN = 0 (Wdn = 10%) to -1 (Wdn!)!!!$%& 

Maximum (CN = 1) values were so assigned because Wdn!"!#$%!*(++,-.(/0-!'(!,1*,--!2*,!324,45!
'6,!78--!9+8*'2(/!/,,0,0!'(!-8':+8',!'6,!.(+,!;(<:7,&!9(+!'6,!-:+98*,!0,/-2'=!8/0!.(+(-2'=!
8--:7.'2(/-!(9!Pathare et al. (2018). The other benchmarks (CN  = 0 at Wdn = 10%, and CN = -1 
at Wdn!)!$%&!>,+,!*6(-,/!?8-,0!(/!(:+!@:8<2'8'2;,!8--,--7,/'!(9!'6,!<2A,<26((0!(9!/,8+B-:+98*,!
2*,!2/!8<<!',++82/-!,162?2'2/C!-:*6!Wdn values (see Fig. 11b of Pathare et al., 2018). 

2.2.2.Thermal Datasets 

Our thermal analysis combines three derived data products: two maps of surface-layer thermal 
inertia and ice-table depth independently produced by Bandfield & Feldman (2008) and Piqueux 
et al. (2019) as well as a global map of subsurface layering developed within the SWIM project 
using the methodology of Putzig & Mellon (2007). These three datasets (designated BF08, 
PQ19, and SP20, hereinafter) are built on the same core physics principle. Planetary surfaces 
consisting of different materials and different combinations of materials exhibit distinctive 
seasonal and diurnal variations in surface temperature and apparent thermal inertia (ATI) 
(Putzig & Mellon, 2007). Information about layering structure in the upper meter of the Martian 
subsurface can therefore be derived by forward-modeling the thermal behavior of a suite of 
material layering scenarios and comparing those model results to spacecraft observations of 
surface temperature or derived ATI. This section summarizes our methods and results, and a 
more detailed description is provided by Sizemore et al. (“Thermal analysis of the distribution of 
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shallow ice on Mars: Comparison of multiple datasets and methods for the SWIM Project,” in 
prep.). 

BF08, PQ19, and SP20 all employ this basic strategy to search for and map shallowly buried 
ice, but differ in terms of procedural details. Broadly, BF08 and SP20 apply somewhat different 
analysis pathways to the same spacecraft dataset, which is bolometric and surface 
temperatures from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES), 
whereas BF08 and PQ19 apply nearly identical analyses to two different datasets, temperatures 
from MGS TES and the Mars Reconnaissance Orbiter (MRO) Mars Climate Sounder (MCS), 
respectively.  

Briefly, the BF08 and PQ19 approach is as follows: At each map pixel, a point in the orbit of 
Mars defined by a particular areocentric longitude of the Sun (LS) designated LS* is determined 
where modeled surface temperatures become the least sensitive to any putative buried ice. 
Surface-layer thermal inertia (TI) is then derived at LS* using a standard lookup-table approach. 
Next, a suite of two-layer forward models are run at each pixel to predict the seasonal 
temperature variation resulting from ice occurring at a range of depths beneath a dry soil layer 
with thermal properties consistent with the previously derived TI. Spacecraft-observed surface 
temperatures are compared directly to modeled seasonal surface temperatures. The best match 
at each pixel is selected based on minimizing relative standard deviation (RSD), allowing the 
derivation of ice-table depth at locations where a match is identified (see Piqueux et al. (2019), 
Bandfield & Feldman (2008), and references therein for details). 

A key characteristic of the BF08 and PQ19 approach is that all forward models include a lower 
layer with high thermal inertia, consistent with buried ice. Both BF08 and PQ19 used the KRC 
software package (Kieffer, 2013) for forward modeling. BF08 employed an older version that did 
not include temperature-dependent thermophysical properties whereas PQ19 employed a 
recent version that includes temperature dependence.   

The SP20 ice-mapping process is based on the Putzig & Mellon (2007) approach of identifying 
a wide range of material heterogeneity types on the Martian surface. It uses global TES ATI 
maps computed at 10° intervals of LS spanning a full Martian seasonal cycle. At each pixel of 
these maps, ATI is derived from TES bolometric temperatures using a lookup table of single-
layer thermal-model results. A suite of two-layer thermal models is also run and used to derive 
ATI as a function of season via the same pathway used in the production of the global ATI maps. 
The suite of forward models includes layering scenarios with seven combinations of four 
material types defined by their thermal properties, including dust over sand (D/S), dust over 
duricrust (D/C), dust over rock (D/R), sand over rock (S/R), duricrust over dust (C/D), duricrust 
over sand (C/S), and rock over sand (R/S). Because the thermal properties of rock and ice are 
effectively equivalent, D/R and S/R scenarios are consistent with subsurface ice. We also 
consider D/C consistent with subsurface ice that does not completely fill the soil pore space, 
based on theoretical (Mellon et al., 1997; Piqueux & Christensen, 2009) and empirical (Siegler 
et al., 2012) models describing the increase of soil thermal conductivity with progressive 
cementation. A range of upper-layer thicknesses are allowed for each material combination in 
our two-layer model suite. The seasonal variation at each pixel of the global maps, ATI(LS), is 
compared to the suite of forward models. Matches are identified based on minimizing RSD, and 
ice-table depth can be derived at locations of D/R, S/R, and D/C matches. 
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Our SP20 analysis used MARSTHERM (Putzig et al., 2013) for ATI derivation and forward 
modeling. This thermal model, which was originally developed for TES thermal inertia derivation 
(Mellon et al., 2000), includes a relatively sophisticated 13-layer one-dimensional radiative-
convective atmospheric model (as compared to KRC’s 1-layer radiative model). It does not 
include temperature dependence of thermal properties for surface and subsurface materials. 

In the second SWIM phase, we modified the heterogeneity matching scheme from that of 
previous mapping efforts by Putzig & Mellon (2007), Putzig et al. (2014), and Morgan et al. 
(2021) to improve sensitivity to buried ice and derivation of ice-table depths. Specifically, we 
removed the shallowest depth nodes from the two-layer model suite to eliminate matches to 
models with extremely thin (< 1 mm) upper-layer duricrust, as we deemed these models to be 
physically implausible. We also updated the algorithm used for interpolating between discrete 
depth models to improve its accuracy. 

BF08, PQ19, and SP20 all identified layering ostensibly consistent with ice at low latitudes. 
BF08 attributed this effect to atmospheric heat transport via Hadley circulation that is not 
accounted for in one-dimensional thermal models. They truncated their ice table maps 
equatorward of 50° in both hemispheres to compensate. PQ19 developed a more sophisticated 
(but still ad hoc) algorithm for latitudinally truncating their ice depth map where ice-table depths 
became shallower with decreasing latitude. They applied this algorithm equatorward of 50°N 
and 60°S, and they also removed outliers equatorward of 35° latitude. 

In the SP20 analysis, we used a similar algorithm to truncate points where apparent ice 
detections were shallowing towards the equator in the BF08 and SP20 maps. We generated a 
filtered version of the SP20 map using a 9x9 pixel low-pass filter. Before filtering, we filled gaps 
in model matches by assuming that the empty pixel had the same ice depth as the next valid 
poleward pixel. We employed an equatorward-marching algorithm starting at 50° latitude in 
each hemisphere. If the local filtered pixel had an ice depth shallower than the median for that of 
the next five poleward pixels, we treated that pixel and all others equatorward of it as non-
detections. We also applied a cutoff at 35° latitude to remove minor outliers. To facilitate 
comparisons, we applied a similar filter to the BF08 map, but using a 3x3 pixel filter and three 
poleward pixels due to the lower spatial resolution. Our approach produced reasonable 
agreement between the SP20 map and predictive ice stability maps by Mellon et al. (2004) in 
both hemispheres, and good agreement between the equatorward extent of ice in the SP20 and 
PQ19 maps of the northern hemisphere. 

For all three maps, we computed thermal ice consistency CT at each pixel where ice was 
modeled as a function of the predicted depth d to the ice table using the following scheme: 

For d < 30 cm, CT = 1 (high consistency with ice) 
For 30 cm ≤ d ≤ 50 cm, CT decreases linearly from 1 to 0 
For all d > 50 cm, CT = 0 (data gives no information about the presence of ice) 

We based this scheme on a suite of 1-, 2-, and 3-layer thermal models which show that it is 
increasingly difficult to distinguish icy and non-icy subsurfaces as ice-table depth increases 
beyond 30 cm (e.g., Fig. 1 of PQ19). We gave the three thermal ice-consistency maps (CBF08, 
CPQ19, and CSP20) equal weighting in the combined map: 

CT = ( CBF08 + CPQ19 + CSP20 ) / 3 
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Our choice to equally weight the three thermal ice-consistency maps does not indicate a 
preference for the TES data over the MCS data. Rather, it reflects the complexities and differing 
assumptions in the generation of all three maps from their constituent input data sources. A 
priori, none of the dataset–methodology combinations is to be preferred. In the absence of 
ground truth (at the multi-pixel scales), there is no clear rationale for weighting the maps 
differently. 

2.2.3.Geomorphology 

We determined our geomorphology ice-consistency values from previous and new mapping of 
periglacial and glacial features. Our new mapping included a grid-mapping survey of eight 
groups of landforms and terrain types that were inferred by previous workers to indicate the 
presence of ice (Fig. 18.2.2). These features included: mantle (Mustard et al., 2001; Milliken et 
al., 2003; Dundas et al., 2018), sublimation-type pits and textured terrain (Carr, 2001; Mangold, 
2005; Kostama et al., 2006), scalloped terrain (e.g., Morgenstern et al., 2007), viscous flow 
features (VFF) (i.e., lobate debris aprons (LDA), lineated valley fill (LVF), concentric crater fill 
(CCF), and small-scale glacier-like forms (GLF)) (Milliken et al., 2003; Head et al., 2010; 
Souness & Hubbard, 2012; Levy et al., 2014), pedestal craters (Kadish et al., 2009), expanded 
craters (Viola et al., 2015), ring-mold craters (e.g., Kress & Head, 2008; Baker & Carter, 2019), 
and terraced craters (Bramson et al., 2015). We based our identification of landforms and 
descriptions on previous work, including recent grid-mapping efforts (see Ramsdale et al. (2017) 
and references therein). Maps produced by previous work were also used as input, including 
pedestal craters (Kadish et al., 2009; Viola & McEwen, 2018), LDA/LVF/CCF (Levy et al., 2014), 
expanded craters (Viola & McEwen, 2018), and scalloped terrain (Viola & McEwen, 2018). 

In the first SWIM phase (mapping in the northern hemisphere between 0-225°E and 290-360°E 
longitude), we used a modified grid-mapping (Ramsdale et al., 2017) approach. Using a 
sampling of 4° x 4° MRO Context Camera (CTX) image mosaics within previously mapped 
geologic units (Tanaka et al., 2005), we tallied the number of observed periglacial and glacial 
landforms and extrapolated the observations to the mapped unit boundaries. The CTX mosaics 
we used are at 5 m/pixel resolution and are beta01 versions available from the Bruce Murray 
Laboratory for Planetary Visualization via http://murray-lab.caltech.edu/CTX/index.html (Dickson 
et al., 2018). We refined this approach in the second SWIM phase for our southern hemisphere 
mapping, surveying periglacial and glacial landforms using the CTX mosaic within 1° x 1° grid 
cells between 24°S and 38°S and within 4° x 4° cells elsewhere. For the 4° x 4° cells between 
0°S and 24°S wherein we found positive identifications of glacial/periglacial landforms, we 
carried out additional grid mapping at the 1° x 1° resolution. 

Using binary values (1=present, 0=absent), we marked observed landforms (from the list of 
eight above) regardless of their abundance within each grid cell. To compute geomorphology   
ice consistency CG, we tallied the number (n) of periglacial features (pf) identified within a given 
grid and weighted them based on their likelihood of containing ice. For most features, we 
assigned a weight of 0.1 per feature to indicate some ambiguity in their ice content. However, 
we chose higher weights for several features to reflect the high ice content required to maintain 
such features, including scalloped terrain (0.75), pedestal craters (0.75), and VFF (1). If the 
nominal CG total for a given pixel was > 1, then we capped the pixel value at +1. 

CG = min [ ( 0.1*npf1 + 0.1*npf2 + 0.1*npf3 + … + 0.75*nscalloped + 0.75*npedestal + 1*nVFF ), 1 ] 
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Figure 18.2.2. Example of landforms mapped as part of the geomorphology analysis. In this 
example, the following features were  tallied: textured terrain, mantle, LDA and pedestal crater. 
Image data, CTX mosaic centered at 44.07°S, 107.45°E. 

Final geomorphology ice-consistency values thus ranged from CG = 0, i.e., no evidence of ice 
from periglacial/glacial features, to CG = 1, i.e., highest evidence of ice from periglacial/glacial 
features. Note that values of CG < 0 were not included in the geomorphology ice-consistency 
formulation since we did not specifically mark features that would be inconsistent with ice, for 
example exposed bedrock. In addition, to enable a layered approach, we split the 
geomorphology ice consistency into shallow (≤ 5 m) and deep (> 5 m) components, wherein 
mantled and textured terrains are limited to the shallow component CGS and terraced craters are 
limited to the deep component CGD. We included all mapped periglacial and glacial landforms in 
the shallow term due to the possibility that ice exists at depths ≤ 5 m for each of those 
landforms. 

2.2.4.Radar Surface Power Analysis 

The Shallow Radar (SHARAD) sounder onboard MRO was designed to search for subsurface 
structures by identifying radar-reflective interfaces ranging in depth from tens of meters to 1 
km (or more) within the Martian crust (Seu et al., 2007). However, the radar echoes that are 
nominally from the surface also contain important information about materials within the upper 
~5 m of the subsurface. The strength of the surface return is governed by multiple factors that 
include observational conditions (e.g., orientation of the spacecraft, state of the ionosphere), 
surface roughness, regional slope, and Fresnel reflectivity. The last of these can be estimated 
from the data by accounting for the others, and this technique provides a measure of near-
surface density. Due to the low density of water ice relative to other geologic materials, 
measuring reflectivity offers a strategy to search for near-surface ice-rich deposits.  

Broadly following a methodology first attempted with data from the Mars Advanced Radar for 
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Subsurface and Ionospheric Sounding (MARSIS) on Mars Express (Mouginot et al., 2010) 
while accounting for the higher frequency of SHARAD, we derived a process to isolate Fresnel 
reflectivity from the SHARAD dataset for the first SWIM phase (Morgan et al., 2021). 

This process applies the following steps: (1) limit the ionosphere effects by excluding all 
daytime tracks, (2) normalize surface power for the effects of surface roughness using the 
SHARAD roughness parameter developed by Campbell et al. (2013) (Fig. 18.2.3), (3) correct 
the loss of power due to regional slope using the median slope value over a Fresnel zone (3 
km) as derived from Mars Orbiter Laser Altimeter (MOLA) data, and (4) take the median value 
of all the corrected SHARAD returns sampled within a given region to account for MRO 
influences (spacecraft roll, solar-panel configuration) (see Grima et al., 2012). 

After isolating an approximation of reflectivity from the MARSIS surface power measurements, 
Mouginot et al. (2010) took an additional step to convert their results to values of the real 
relative dielectric permittivity (ε’). The ε’ of a given geologic substrate controls the speed of 
radar signals as they pass through the subsurface. Measurements of ε’ can therefore be 
compared against laboratory and field measurements to constrain bulk subsurface 
compositions. In terms of the geologic materials that comprise the Martian subsurface, ε’ is 
related to the density and porosity of those materials, and thus ice exhibits a much lower 
permittivity relative to basaltic lava flows. The radar subsurface analysis described in §18.2.2.5 
estimates the bulk ε’ of the subsurface (to depths > 15 m) to search for low permittivity values 
that could indicate the presence of buried ice.  

Figure 18.2.3. Corrections of the SHARAD surface return (60°S – 60°N) to isolate Fresnel 
reflectivity. The roughness correction (blue distribution) applied the Campbell et al. (2013) 
roughness parameter. The slope correction (red distribution) applied MOLA gridded data.  
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For the radar surface analysis, we did not attempt to convert the corrected power returns to 
estimates of ε’. To achieve that would require calibration of the corrected power by comparing 
our measurements against terrains of a known permittivity. Mouginot et al. (2010) used the 
north and south polar layered deposits (NPLD and SPLD) as a reference for nearly pure water 
ice (ε’ = 3.1, see Plaut et al., 2007; Grima et al., 2009). However, the shallow near-surface 
sampling of the SHARAD surface echo (~5 m) makes this approach problematic. In the case 
of the NPLD, the fine layering of the shallow subsurface can cause positive and negative 
interference of the SHARAD return whereas the surface of the SPLD is covered in a dust layer 
of variable thickness. As a consequence, the resulting SHARAD surface power returned over 
the polar caps is not equivalent to that of near pure ice and likely drifts from region to region in 
response to layering changes and variations in dust content.  

In lieu of estimating values of ε’, we opted to use the global distribution of corrected power 
values as a means to explore relative near-surface density. To test our approach, we 
compared the relationship between surface power and roughness exhibited by distinct Martian 
terrain types. Our analysis revealed that different units display similar curves, albeit with an 
offset in power. For example, high density terrains such as young volcanics were found to sit 
higher on the power axis relative to the icy polar caps (Fig. 18.2.4).  To apply such an analysis 
across the SWIM study region, we translated the global power distribution such that surface 
power < -1𝛔 maps to radar surface ice consistency CRS = +1, surface power > 1𝛔 maps to  

CRS = -1, and surface power values of -0.5 𝛔, 0, and 0.5 𝛔 were mapped to CRS = +0.5, 0, and 
-0.5, respectively.  

Figure 18.2.4. Different Martian terrain types (CO2 of the SPLD permanent cap in blue and 
basaltic substrate within Tharsis in red) exhibit similar radar scattering relationships (slopes in 
this figure) but distinct offsets in power. We attribute the power offset to differences of Fresnel 
reflectivity, where the higher-power terrain corresponds to a denser substrate relative to that of 
the lower-power terrain. 
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2.2.5.Radar Subsurface Structure and Composition Analysis 

We incorporated an analysis of subsurface radar returns observed by SHARAD into the SWIM 
project through an extensive mapping and interpretation effort undertaken by five members of 
the team who specialize in planetary radar sounding. For subsurface analysis, SHARAD data 
from a particular observing run along an MRO orbit segment are presented as images of 
returned radar power, with along-track distance on the horizontal axis and either delay time or 
depth on the vertical axis (a display format known as a radargram; see Fig. 18.2.5). 

We visually inspected all available SHARAD radargrams in the SWIM survey regions to identify 
candidate subsurface signals. To assess the nature of candidate subsurface signals, we 
compared the radargrams to cluttergrams, which simulate the radar echoes produced by the 
Martian surface topography. Cluttergrams allow one to determine if the candidates are true 
subsurface signals or merely an artifact of off-nadir surface reflections returned to the spacecraft 
at delay times similar to those of potential subsurface returns (Choudhary et al., 2016). Upon 
determining that signals are likely to be true subsurface returns (i.e., not at the same locations 
and delay times as features in MOLA-derived cluttergrams), we then further analyzed them to 
estimate a value for the real relative dielectric permittivity (ε’) of the subsurface materials. 

Figure 18.2.5. SHARAD observation 35218-01 over an LDA in the southern hemisphere region 
of Argyre. (a) Delay-time radargram, with candidate subsurface signal indicated by white arrows. 
(b) Clutter simulation using a Mars Express High Resolution Stereo Camera digital terrain 
model, showing no predicted clutter at the delay time of the candidate signal. (c) Depth-
corrected radargram using ε’=3; reflector has aligned with the surrounding plains. (d) Context 
image of radar ground track (yellow line) with topography and mapped extent of LDA (red line). 
After Berman et al. (2021). 

 of 11 29



Ch. 18. Ice Resource Mapping on Mars               Putzig & Morgan et al.

As is explained in §18.2.2.4, ε’ controls the speed of radar signals as they pass through a 
geologic material, and thus places constraints on the subsurface composition. When the two-
way delay time Δt is measured between SHARAD reflections bounding a geologic unit of known 
thickness h, ε’ can be calculated as ε’ = (c Δt / 2h)2, where c = speed of light. Δt can be 
measured readily using SHARAD radargrams, but it is often more difficult to estimate h. 

We estimated h using different methods appropriate for different types of geologic units. To 
enable quick application to many observations while producing reliable results in the aggregate, 
we optimized our techniques for each type of unit. For mantling units on the plains, we defined 
the base of the unit as a straight line between the plains elevation observed on either side of the 
unit in the radargram, with h being the depth to that line from the top of the unit. For geologic 
units that lie atop the plains but abut scarps and highlands on one side (such as for lobate 
debris aprons), we defined the base as a flat or fixed-slope interface continuous with the plains 
elevations observed on one side (following the methods of Petersen et al., 2018). In some 
special cases, we used stereo images to identify layer thickness in terraced craters, fossae, or 
other outcrops to provide point estimates of h. An important caveat is that the estimate of ε’ is 
only as good as the estimate of h and the assumption that that thickness corresponds to the 
location of the interface producing the radar reflection. 

Pure water ice has ε’ ~3 (Ulaby et al., 1986) whereas basaltic materials typical of Martian 
bedrock have higher values of ε’ ~6–12 (Campbell and Ulrichs, 1969). Mixtures produce ε’ 
values that are intermediate between those of the individual materials. Mixing models (e.g., 
Sihvola, 1999; Stillman et al., 2010; Brouet et al. 2019) can predict ε’ for mixed materials, but 
there remains an issue of non-uniqueness when translating from ε’ to a specific composition. 

Nevertheless, we used this knowledge of ε’ values typical for our target ice deposits and Martian 
geology to formulate the following equation for radar subsurface (deep) ice consistency CRD: 

CRD  =  +1 where ε’!)!D 
CRD  =   ½ (5 - ε’) >6,+,!D!)!!ε’ !)!E!!!!!!3CRD  =  0 where ε’ = 5) 
CRD  =   -1 where ε’!"!E 

In this framework, an ε’ value of 3 is representative of pure ice, an ε’ value of 7 is representative 
of pure basalt bedrock (no ice), and an intermediate ε’ value is representative of an ice–rock 
mixture. While it is possible that materials such as high-porosity volcanic ash deposits could 
have a value of ε’ = 3 while containing no ice, it is the combination of CRD with ice-consistency 
values from the other instruments and techniques that help to disambiguate such materials.  

2.3.Composite Ice Consistency from Data Integration 

The greatest challenge to the SWIM project is synthesizing the diverse ice characterization 
techniques into congruent map products. As is outlined in §18.2.2, each of the five techniques 
provide contrasting perspectives of the physical properties of the subsurface, probe different 
depths, and exhibit separate caveats. The complexity of the problem is further compounded by 
the lack of ground-truth data that is sufficiently widespread to calibrate the individual techniques. 
For similar terrestrial problems, the integration of remote-sensing products typically is facilitated 
by the use of calibration maps produced through fieldwork. Remotely sensed datasets can then 
be calibrated via the ground-truth data. While a few very geographically limited areas, such as 
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the Phoenix landing site (Smith et al., 2008) and fresh ice-exposing impact craters (Byrne et al., 
2009; Dundas et al. 2014; Dundas et al. 2021) provide actual and effective ground truth of 
buried ice on Mars, they are too few and far between to enable the production of calibration 
maps at the scales that would be required for the SWIM study’s remote-sensing datasets. 

Below, we describe two different approaches to integrating our ice characterization techniques. 
The first represents the evolution of the SWIM Equation derived for the first SWIM phase in the 
northern hemisphere (Morgan et al., 2021). The second introduces a Bayesian framework to 
synthesize the probabilistic range of ice content measured by each technique.  

2.3.1.The SWIM Equations 

The driving motivation behind our integration efforts is to track agreements between our diverse 
ice characterization techniques. Within this framework, ice consistencies derived from multiple 
data sources are valued above that from a single methodology. There is clearly a higher 
potential for ice in areas where more datasets are consistent with the presence of ice and fewer 
are inconsistent with ice. The SWIM equations were developed to rank locations across Mars 
based on both the number of ice signatures and the relative strength of those signatures. For 
the first SWIM phase, we applied a straightforward approach that averaged the five ice-
consistency values into a single value of composite ice consistency (Ci): 

Ci = ( CN + CT + CG + CRS + CRD ) / 5   (Eq. 1) 

As is the case for the individual techniques, Ci can in principle range from -1 (all techniques are 
fully inconsistent with the presence of ice) to +1 (all techniques are fully consistent with the 
presence of ice). A value of 0 reflects no data or a balanced ambivalence among the ice-
characterization techniques. However, in our current implementation, ice consistency for our 
thermal and geomorphological techniques is restricted to the range of 0 to 1, and thus the 
minimum Ci value is limited -⅗. 

To interpret our Ci results for landing-site planning, we consider a value corresponding to 1/(no. 
of  techniques) = 0.2 as the minimum threshold for areas of interest that are likely to contain ice 
in quantities viable as a resource. The rationale behind this threshold assignment is that either 
one technique must post the maximum ice-consistency value while the others are inconclusive 
or multiple datasets must provide positive indications of ice. Following this same logic, we 
consider values of Ci > 0.6 to be of the highest significance, as this would indicate a majority of 
techniques are strongly supportive of ice.  

The known locations of mid-latitude ice, as exposed by impacts (Byrne et al., 2009; Dundas et 
al., 2014) and along scarps (Dundas et al., 2018), are not statistically sufficient to warrant 
calibration of the individual terms. Consequently, our first approach was to treat all of the terms 
within the SWIM equation equally. Nevertheless, the ice-exposing impacts do provide an 
opportunity to assess the effectiveness of our mapping approach. For example, the SWIM 
region from the first phase of mapping (Fig. 18.2.1) contains 13 ice-exposing impact sites. The 
average Ci value for these sites is 0.26 ± 0.16 (Morgan et al., 2021), which is above our 
minimum threshold, lending confidence to our methodology. Another motivation we had for the 
absence of weighting in Eq. 1 for the first SWIM phase was to encourage community 
engagement and permit SWIM product users to experiment with different formulations to 
produce their own integrated maps. 
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During the second SWIM phase, we continued to develop our data integration techniques, 
encouraged by community feedback that suggested we examine alternative approaches. As the 
datasets behind the various techniques probe different depths into the subsurface, we chose to 
leverage those depth sensitivities to produce three new equations that correspond to three 
depth zones: < 1 m, which is dominated by neutron and thermal spectrometer data; 1–5 m, 
which is dominated by shallow geomorphic and radar surface-return data; and > 5 m, which is 
dominated by deeper geomorphic data and radar subsurface dielectric permittivity estimations. 
To enable this layered approach, we divided the mapped geomorphic landforms into two groups 
corresponding to ice presence above and below a depth of 5 m, as described in §18.2.2.3. In 
addition, we introduce weighting factors sM, i.e., the shallowness of method M, which is 
determined by dividing the depth of interest for each equation by the sensing depth of each 
method. Thus, for the first depth zone at < 1 m, we have: 

Ci [< 1 m] = ( sNCN + sTCT + sGSCGS + sRSCRS ) / ( sN + sT + sGS + sRS )  (Eq. 2) 

     = ( CN + CT + 0.2*CGS + 0.2*CRS ) / 2.4 

where sN and sT are both set equal to 1 because the neutron and thermal sensing depths of ~1 
m are entirely within the zone of interest whereas sGS and sRS are both set equal to 0.2 because 
only 20% of the shallow-geomorphic and radar-surface sensing depths of ~5 m extend into the 
zone of interest. The deep radar consistency CRD does not appear in the Eq. 2 because the 
minimum sensing depth (taken as the SHARAD range resolution) of ~15 m translates to an sRD 
for this zone of 1/15 that makes any CRD term negligible. 

For the second depth zone at 1–5 m, we have: 

Ci [1–5 m] = ( sGSCGS + sRSCRS + sRDCRD ) / ( sGS + sRS + sRD )   (Eq. 3) 

     = ( CGS + CRS + 0.3*CRD ) / 2.3 

where sGS and sRS are both set equal to 1 because the shallow-geomorphic and radar-surface 
sensing depths of ~5 m are entirely within the zone of interest whereas sRD is set equal to 0.3 
because only 30% of a nominal radar-subsurface sensing depth (taken as the SHARAD range 
resolution) of ~15 m extends into the zone of interest. 

For the third depth zone at > 5 m, we have: 

Ci [> 5 m] = ( sGDCGD + sRDCRD ) / ( sGD + sRD )      
(Eq. 4) 

    = ( CGD + CRD ) / 2.0 

where sGD and sRD are both set equal to 1 because the deep-geomorphic and radar-subsurface 
sensing depths extend indefinitely into the zone of interest. 

Our formulation of the SWIM equations is by no means the only approach possible, and other 
methods may be brought to bear, depending on different goals of end users of the ice-
consistency mapping products. 
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2.3.2.Bayesian Statistical Analysis 

The SWIM equation approach to mapping ice consistency has two limitations: the values of ice 
consistency do not indicate ice concentration and there is no formal way to estimate uncertainty. 
A potential solution to these shortcomings is the use of Bayesian inversion. At the core of the 
SWIM project is an inverse problem wherein we have a set of satellite remote sensing data and 
we want to know the Martian subsurface composition that produces the measurements and 
whether that composition includes water ice. Bayesian inversion, as described by Tarantola 
(2005), is a well-developed procedure to solve inverse problems. Our application of the 
Bayesian procedure is based on the ability to represent the likelihood of all possible subsurface 
compositions as a probability density function (PDF). To formulate that function, we assume that 
the Martian subsurface is composed of ice, rock, and pore space. Thus, the set of all possible 
subsurface models can be described by two values: the volume percent of water ice and the 
volume percent of rock (with the pore volume given by the remaining percentage). In the 
absence of data or prior information, all composition models are equally likely. Our purpose in 
using the Bayesian method is to combine multiple sets of data to whittle down the set of 
possible model solutions and constrain the set of possible subsurface compositions at each 
location on Mars. Additionally, because the Bayesian approach is based on PDFs, the approach 
allows for the incorporation of measurement uncertainty. 

Although some measurements may be ambiguous toward water ice, all the datasets we use 
allow us to place constraints on the composition of subsurface materials. For example, a low 
permittivity determined from radar reflections could either indicate water ice or highly porous 
material, but not solid rock. Conversely, a high thermal inertia determined from temperature 
measurements would suggest either solid rock or the presence of water ice, but not a porous 
material. Separately, the two measurements do not uniquely indicate ice, but together they do. 
Bayesian inversion allows us to handle such nuanced cases by probabilistically expressing the 
subsurface compositions that can explain each measured property. 

We discretize the space of all composition models and link each model to potential data 
measurements via theoretical or empirical formulas. Radar reflections from the SHARAD 
instrument result in estimates of the subsurface dielectric permittivity. By simplifying the Maxwell 
Garnett mixing model (Koledintseva et al., 2006), we can express the effective permittivity 
as a function of the subsurface composition as: 

 , 

where , , and are the permittivities of water ice, rock, and pore space, respectively, and  

and  are the volume fractions of water ice and pore space, respectively. In reality, all types of 

rock do not have the same permittivity, so we assign to a distribution of values covering the 
range of plausible rock types on Mars. This means that rather than a given composition model 
mapping to one , it maps to a distribution of values. Likewise, a given estimation of 
maps to a distribution of composition models. 
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The water equivalent hydrogen (WEH) values derived from MONS data by Pathare et al. (2018) 
can be expressed as a function of the subsurface composition: 

 

where water ice mass  =  x  is the water ice volume fraction  multiplied by the water ice 
density  (= 920 kg/m3), hydrated mineral mass  =  x  is the hydrated mineral volume 
fraction  multiplied by the density of hydrated minerals  3F!GHIJ!ACK73), = 50% is 
the assumed maximum WEH% that could be recorded by a subsurface composed entirely of 
hydrated minerals, and the total mass  =  +  +  +  . The density of the rock 
and the fraction of the rock that is composed of hydrated minerals are assigned to a distribution 
of values, so a given subsurface composition model maps to a distribution of WEH% values. 

Analysis of TES data provides an estimate of the thermal inertia of the subsurface. The thermal 
inertia is related to the subsurface composition by: 

 

where  is the thermal conductivity of the subsurface,  is the density of the subsurface, and  
is the heat capacity of the subsurface. The densities and heat capacities are simply the volume-
fraction weighted averages of the rock, ice, and pore space components, but the thermal 
conductivity is more nuanced. We use the approach described by Mellon et al. (1997) to write 
the thermal conductivity as a function of ice, rock, and pore-space composition. Following the 
rules outlined by Tarantola (2005), the set of theoretical relationships among datasets from the 
radar, neutron spectrometer, and thermal spectrometer can be used to create PDFs that relate a 
given measurement to a distribution of composition models. 

Geomorphological features do not have strict mathematical relationships to water-ice content. 
However, geomorphology can be added to the Bayesian approach if treated as prior knowledge. 
For example, recent impact events in some regions of Mars expose water ice in and around the 
craters they form. Although the exact concentration of the ice may not be determined from 
images, the fact that ice is visible adds a constraint to the minimum amount of ice that must be 
present in the subsurface in the general vicinity of the crater (Dundas & Byrne, 2010; Dundas et 
al., 2014). Thus, we can assign qualitatively justified PDFs for all geomorphological features that 
are related to ice.  

Once a PDF has been created for each dataset, we can combine the PDFs in a similar fashion 
to combining consistency values. For the near surface, 0–5 m depth, we combine PDFs for the 
geomorphology, radar surface data, thermal data, and neutron data. For the deeper subsurface, 
>5 m depth, we combine PDFs for the geomorphology and radar subsurface data. We combine 
the PDFs through multiplication, following the rules of Tarantola (2005). By definition, multiplying 
PDFs results in a new PDF that is always a more refined state of information. Figure 18.2.6 
shows an example combination of PDFs for the 0–5 m depth zone at one hypothetical location 
on Mars. The result gives us a PDF that indicates the most likely ice volume percent and also 
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how certain that value is. By repeating this process for every location on Mars, we can generate 
a probability map of water ice content across the Martian globe.  

The Bayesian approach provides multiple advantages over the ice-consistency approach. First, 
it allows us to estimate ice percentage versus simply whether ice may or may not be present. 
Second, the method allows us to address quantitatively how measurement uncertainty and 
interpretation ambiguity lead to uncertainty of the ice concentration. Lastly, the procedure 
provides a robust set of rules for how to incorporate each element of knowledge we have about 
water ice on Mars. New data and information can easily be included into the framework to 
provide updated probability results, and by definition, new information can only refine the results 
and further constrain the composition. However, the SWIM Bayesian approach is still an area of 
active research that needs refinement and testing before the results are formally used. 
Specifically, we plan to refine the approach by adding compositional variation with depth to the 
models and by adding the correct depth dependence to each theoretical relation between 
measurement and composition when funding allows. 

 

Figure 18.2.6. Illustration of the Bayesian SWIM method applied for a single location on Mars 
that is in the vicinity of an icy crater and has a thermal inertia of 1500 ± 500 tiu, an effective 
permittivity of 3.1 ± 1.5, and a WEH of 65 ± 20%. Each observation and measurement has a 
PDF relating it to a set of permissible composition models. Upon multiplying the PDFs together, 
the result is a more limited set of models that can explain all measurements and indicates the 
most likely ice volume percentage (the red dot). In this case, the most likely concentration of 
water ice is 63%, and the overall result is consistent with porous dusty ice.  

3.SWIM Results 

3.1.Non-layered Ice Consistency 

We present the results of our predicted composite ice consistency (Eq. 1) in Figure 18.3.1a. In 
addition to extending the mapping beyond the northern hemisphere study area (Morgan et al., 
2021), we revised the methods used in generating the dataset-specific ice-consistency maps 
as described in §18.2.2. This product provides an overall view of where the collection of 
datasets points toward a high likelihood of finding buried ice. However, it does not provide a 
clear sense of the distribution of that ice with depth nor of its concentration relative to other 
materials in the subsurface.


3.2.Ice Consistency for Depths less than 1 meter 
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We present the results of our predicted ice consistency for the upper meter of the Martian 
surface in Fig. 18.3.1b. Ice consistency in this depth range is driven by the weighted averages 
of the consistencies with ice from neutron and thermal spectrometers, surface radar, and 
shallow geomorphology observations (Eq. 2). Not surprisingly, the results are broadly 
consistent with those of prior mapping efforts based on data from thermal and neutron 
spectrometers, which are the dominant components of Eq. 2. To apply the SWIM 1.0 approach 
for determining the minimum threshold of an area of interest — 1/(no. of techniques) (Morgan et 
al., 2021) — we need to also factor in the weighting incorporated within Eq. 2 when designating 
the denominator. For Ci [< 1m], this equates to 1/2.4 = 0.42. In this case, either one technique 
(with a maximum weighting of 1) is recording a maximum positive ice consistency and the 
others are uncertain or, alternatively, multiple techniques are providing positive ice-consistency 
values. Considering this threshold of 0.42, we find that substantially high ice consistency occurs 
in three regions between 40° and 45° latitudes, specifically in Arcadia Planitia (170-220°E) and 
eastern Utopia Planitia (120–160°E) in the north and Promethei Terra (100–140°E) in the south. 
Also apparent in Fig. 18.3.1b are regions of slightly positive ice consistency ranging between 
0.1 and 0.3 at low latitudes in Arabia Terra (0°E–50°E), Aeolis Mensae (165°E–200°E), and 
Medusae Fossae (165°E–200°E). Two analyses of epithermal-neutron flux — one using MONS 
data (Wilson et al., 2018) and one using Fine Resolution Epithermal Neutron Detector (FREND) 
data (Malakhov et al., 2020) — modeled a simplified uniform surface layer and argued for the 
presence of excess ice “oases” in these near-equatorial regions. However, Pathare et al. (2018) 
modeled a more realistic two-layer near surface that was constrained by epithermal, thermal, 
and fast neutrons, and they concluded that the MONS data are much more consistent with the 
widespread presence of hydrated minerals in these low-latitude regions. This conclusion is 
supported by a lack of highly elevated abundances of observed atmospheric water vapor that 
should result from the sublimation of such shallow excess ice at equatorial temperatures.   

3.3.Ice Consistency for Depths of 1 to 5 meters 

We present the results of our predicted ice consistency for depths between 1 and 5 m in Fig. 
18.3.1c. Ice consistency in this depth range is driven by the weighted averages of the 
consistencies with ice from surface radar, deep radar, and shallow geomorphology observations 
(Eq. 3). The neutron and thermal spectrometer ice-consistency values are not included, as their 
measurements do not extend into this depth range. Compared with results for the top 1 m of the 
subsurface (Fig. 18.3.1b), the results for 1–5 m depths show a substantial equatorward 
expansion of areas containing evidence of ice, with moderate ice-consistency values extending 
to < 30° latitude in some locations, most notably in Arabia Terra south of Deuteronilus Mensae 
(10–60°E) and within the Hellas basin (~45°–90°E). The equatorward extent of continuous Ci [1–
5 m] in both the northern and southern hemispheres is largely driven by the spatial occurrence 
of mantling units, which are included in the shallow geomorphology term (CGS ). The highest 
values of Ci [1–5 m] are in localized regions dispersed throughout Arcadia Planitia and the 
broader northern plains and in association with locations that have a high density of glacial 
features (LDA, LVF, and CCF) such as Deuteronilus Mensae and eastern Hellas. Intriguingly, 
several locations near the equator show low to moderate Ci [1–5 m]. Many of these locations 
are associated with the Medusae Fossae Formation, where pedestal craters are observed and 
where layers of dust might be contributing to the surface-radar signal. Near Schiaparelli crater 
in western Terra Sabaea (~5-10°S, 15°E), we mapped a number of landforms resembling CCF 
and other glacial features, consistent with previous work in this area (Shean, 2010). 
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             (a) 

             (b) 

             (c) 

 

             (d) 

 
Figure 18.3.1: Composite ice-consistency maps. (a) For all depths (Ci ) using Eq. 1. (b) For 
depth zone < 1 m (Ci [< 1 m]) using Eq. 2. (c) For depth zone 1–5 m (Ci [1–5 m]) using Eq. 3. (d) 
For depth zone > 5 m (Ci [> 5 m]) using Eq. 4. Basemaps are MOLA shaded relief, with black 
masking of elevations above +1 km. Red crosses in (a) represent ice-exposing impacts. 

 of 19 29



Ch. 18. Ice Resource Mapping on Mars               Putzig & Morgan et al.

3.4.Ice consistency for depths greater than 5 meters 

We present the results of our predicted ice consistency for depths greater than 5 m in Fig. 
18.3.1d. Ice consistency in this depth range is driven only by the deep radar and deep 
geomorphology terms (Eq. 4), since the other terms all have sensing depths ≤ 5 m. The deep 
geomorphology term excludes mantled and textured terrains due their typical thickness < 5 m, 
especially at the most equatorward locations where mantle appears as isolated patches and 
highly dissected. The mapping results for this depth zone are similar in spatial extent to those 
for Ci [1–5 m] (Fig. 18.3.1c) with notable exceptions in the occurrences of the highest ice-
consistency values. The deep radar term includes detections of subsurface reflectors 
associated with widespread units in Arcadia Planitia and Utopia Planitia and glacial landforms 
across the northern and southern latitudes. The permittivities calculated from these reflectors 
and their elevation constraints show high consistency with ice. Combined with the 
corresponding presence of periglacial and glacial landforms, these yield the highest ice 
consistency in the map (Fig. 18.3.1d). The northeast-to-southwest gradient of ice consistency 
in Arcadia Planitia is likely an artifact of the limited number of elevation tie points available for 
calculating dielectric permittivity values from radar data in this region.


The excursions of moderate ice consistency into regions < 30° latitude are still present (Fig. 
18.3.1d) and are due to the occurrences of glacial landforms extending to these latitudes. 
These glacial landforms appear mostly as isolated CCF or other “icy” fill confined within 
craters. Unfortunately, the small size of these craters relative to the SHARAD radar footprint 
limits the ability to detect subsurface reflectors due to the pervasive clutter resulting from the 
steep crater walls. 


Radar reflectors are not observed in many locations where there is geomorphic evidence of ice. 
Their absence may be due to several factors, including a potential lack of dielectric contrast 
between ice and regolith, strong attenuation of the radar signal (e.g., from surface roughness), 
limitations of the vertical and horizontal resolutions of SHARAD radar data, and obscuration of 
reflectors by clutter. Reflectors are most prevalent in association with LDA, LVF, and CCF in 
Deuteronilus and Protonilus Mensae and in eastern Hellas, as well as in the Amazonian units in 
Utopia and Arcadia, resulting in high Ci [> 5 m] values, where subsurface ice may be thickest 
and/or most pure. 

3.5.SWIM Products 

All products from the Mars SWIM projects are being made available via the publicly accessible 
website at https://swim.psi.edu. The team also intends to archive the products with NASA’s 
Planetary Data System. The website contains PNG, TIFF, and GeoTIFF versions of all the 
composite Ci maps presented here as well as of dataset-specific ice-consistency maps that 
went into creating the composites. Other information and ancillary data are also available, such 
as a map of the depth to the base of ice produced from SHARAD subsurface data.


4.Discussion 

4.1.Comparison of SWIM Results to Ice Exposing Impacts 

As was discussed in §18.2.3, a major challenge to producing synthesized maps of ice presence 
on Mars is the lack of sufficient ground-truth data with which to calibrate our data products. 
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Nevertheless, the detection of ice-exposing fresh impacts across Mars (Byrne et al., 2009; 
Dundas et al, 2014; 2021) provides an opportunity to evaluate our mapping approach.  

The first fresh impact to be recognized on Mars was identified in Mars Orbiter Camera (MOC) 
data (Malin et al., 2006). Since the arrival of MRO to Mars, CTX has been actively employed to 
search for new impacts. To determine the validity of the detections, each potential impact is 
followed up by at least one HiRISE observation. With an order-of-magnitude higher resolution 
relative to CTX and a multi-channel capability (one infrared and two visible color channels), 
HiRISE enables a search for evidence of ice excavated by the impact (either within the crater or 
in its ejecta blanket).  

During the 2019 phase of the SWIM project, 14 ice-exposing impact sites had been identified 
within the northern hemisphere study area (Fig. 18.2.1) (Dundas et al., 2014). Comparisons 
between the impact locations and the corresponding values on the ice-consistency map of 
Morgan et al. (2021) showed good agreement, with 13 of the sites registering positive Ci values. 
The average Ci value of map pixels containing impacts was 0.26 ± 0.16 and the single negative 
value was close to zero, and thus considered negligible. As of the publication of Dundas et al. 
(2021), CTX and HiRISE have identified 48 fresh ice-exposing impact sites within the mid- and 
high latitudes of Mars, and 30 of these sites are located within the SWIM study region. 
Comparing the location of these sites with the updated 2020 SWIM mapping using Eq.1 (Fig. 
18.3.1a; to be concordant with the 2019 analysis), we found that all of the impact sites are within 
positive Ci pixels that have a mean value of 0.29 ± 0.14.  

At most of these sites, there are multiple craters due to bolide break-up in the Martian 
atmosphere prior to impacting the surface. Regardless of the number of craters at a given site, 
the diameters of the majority of the ice-exposing impacts are <10 m, with the largest at 48 m. 
From empirical studies of the relationship between the diameter and depth of impact craters, we 
expect most of the ice to have been excavated from the upper ~1 m of the subsurface (Dundas 
et al., 2021). As a result, the ice sampled by the impacts is most relevant to Ci [< 1 m] map 
product (Fig. 18.3.1b). In this case, 27 of the 30 impacts correspond to positive Ci [< 1 m] 
values, with a mean of 0.39 ± 0.32. One of the three impacts with negative Ci [< 1 m] values is 
the largest of the ice-exposing impacts with a diameter of 48 m that likely excavated ~4 m into 
the subsurface. It is therefore possible that the upper meter of the subsurface at this location is 
ice-free. The corresponding Ci [1–5 m] value for this location, +0.5, is consistent with the 
presence of deeper ice.   

The strong correlation between ice-exposing impacts and the SWIM maps lends weight to the 
effectiveness of integrating multiple datasets. Within the northern hemisphere, the clustering of 
low-latitude impacts within longitudes that correspond to broad regions of elevated Ci  values 
(140–220°E) provides further encouragement. It is important to note that a hemispherical 
discrepancy exists between the number of ice-exposing craters observed in the north relative to 
the south. The distinct lack of fresh crater detections (icy or not) in the south is likely an 
observation bias in part related to the lower dust cover (Dundas et al., 2021) and should 
therefore not be attributed to a lack of buried ice. Additionally, imaging of the clusters of craters 
indicates that there are local-scale variations in the depth to and concentration of buried ice 
(Dundas et al., 2021). 
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4.2.Constraints on Ice Content 

To enable the use of buried ice as a resource at any given location, one must understand its 
geographic distribution, thickness, depth of burial, and purity. The results of the SWIM study 
contribute to this understanding and place important constraints on each of these factors. A key 
result is new, more complete mapping of the geographic distribution of where ice is mostly likely 
to be found. Where subsurface radar returns related to buried ice are constrained by elevation 
data, they have allowed us to not only determine the depth to the base of ice but also to assess 
the bulk concentration of ice within the column extending to the surface. Where ice is shallow, 
the neutron and thermal spectrometer data allowed an estimation of the burial depth within the 
upper meter of the subsurface, with the neutron data also placing limits on the concentration of 
the ice. Detection of hydrogen via neutron-spectrometer data is inherently limited to a sensing 
depth less than about 0.5 m below the Martian surface. Similarly, the ability to detect buried ice 
by its thermal effects is also limited to about 0.5 m by the thermal skin depth of geologic 
materials that form the overburden above the ice table. While the SHARAD surface-return data 
enable some measure of material properties in the upper 5 m, that assessment is of bulk 
properties and does not allow one to identify variations or distinct interfaces in this zone. The 
subsurface radar sounding by SHARAD cannot resolve interfaces shallower than 15 m deep 
due to a combination of the inherent vertical resolution of the radar and its band-limited nature 
that leads to interferences with the surface return. These considerations leave some 
shortcomings in our ability to resolve ice content between depths of 0.5 m and 15 m, although 
the radar surface return does contribute toward understanding properties down to 5 m depth. 

4.3.Future Considerations 

As noted above, a primary motivation for the SWIM project has been mapping of buried water 
ice that may serve as a potential resource for future human missions. While the work presented 
here represents a major advancement in the integration of datasets and their broad application 
across Mars, there is much more that can be done with the existing data to further evaluate the 
resource potential of buried ice. For example, due to the practical limitations of time and 
personnel available for this study, the grid-mapping technique employed did not yield an 
exhaustive catalog of individual geomorphological indicators of buried ice. More generally, 
complete mapping at the highest resolutions of all available data was beyond the scope of the 
project. In addition, a complete scientific assessment of the analyzed data, such as the age, 
nature and climatological implications of the mapped buried ice, was not part of the funded 
effort, and the Bayesian statistical approach was limited to a preliminary analysis. The products 
of this study are intended to guide choices for more in-depth studies by future workers to 
support their evaluation of potential human landing sites. The SWIM products and methods may 
also serve to inform future scientific studies related to Martian climate history. 

Given the limitations of the currently available data (see §18.4.2), obtaining a more thorough 
understanding of buried ice on Mars will also require new instrumentation. The gap in sensing 
depth between existing radar and other methods is especially limiting, as one cannot confidently 
map the depth of the ice table where it extends to depths greater than 0.5 m using currently 
available data. To resolve these depths, new instrumentation that can build on the capabilities of 
previous and current instruments is needed. From a global perspective, a high-frequency radar 
sounder (L–P band) and/or synthetic-aperture radar imager would be extremely complimentary 
to SWIM and other ice-detection studies by bridging the gap between thermal and neutron 
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spectroscopy data and the SHARAD data. In this regard the initial plans for an International 
Mars Ice Mapper (I-MIM) mission (Watzin, 2021) are particularly timely. Ultimately, it would be 
best to obtain actual ground truth at a prospective human landing site using a landed robotic 
mission with a drilling system capable of reaching ice within a few meters of the surface. 
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6.Acronyms and Mathematical Symbols 

ATI Apparent thermal inertia

BF08 Bandfield & Feldman (2008)

c Speed of light in vacuum

ch Bulk heat capacity

C Ice consistency

Ci Ice consistency 

CG Ice consistency derived from geomorphological data

CGD Ice consistency derived from deep geomorphological data

CGS Ice consistency derived from shallow geomorphological data

CN Ice consistency derived from neutron spectrometer data

CRD Ice consistency derived from radar subsurface dielectric estimations

CRS Ice consistency derived from radar surface returns

CT Ice consistency derived from thermal spectrometer data

CTX Context Camera on MRO

CRISM Compact Reconnaissance Imaging Spectrometer for Mars on MRO

d Depth below surface

Volume fraction of ice

Volume fraction of pore space

Volume fraction of rock

Volume fraction of hydrated minerals within rockfh

fi

fr

fp
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h Thickness (height) of a geologic layer

HiRISE High Resolution Imaging Science Experiment on MRO

I-MIM International Mars Ice Mapper

JPL Jet Propulsion Laboratory

k Bulk conductivity

LDA Lobate Debris Apron

LS Season (areocentric longitude of the Sun) of buried ice insensitivity

MARSIS Mars Advanced Radar for Subsurface and Ionospheric Sounding on 
Mars Express

MCS Mars Climate Sounder on MRO

MGS Mars Global Surveyor

MOLA Mars Orbiter Laser Altimeter on MGS

MONS Orbiter Neutron Spectrometer on Mars Odyssey

MRO Mars Reconnaissance Orbiter

NASA National Aeronautics and Space Administration

NPLD North polar layered deposits

PDF Probability density function

pf Periglacial feature

PQ19 Piqueux et al. (2019)

sY Shallowness of method Y (subscripts as for CY listed above)

SP20 SWIM Project (2020)

SPLD South polar layered deposits

SHARAD Shallow Radar on MRO

SWIM Subsurface Water Ice Mapping

TES Thermal Emission Spectrometer on MGS

TI Thermal inertia

WEH Water Equivalent Hydrogen

Wdn WEH weight fraction of a lower (“down”) model layer

Wup WEH weight fraction of an upper model layer

Whmax Maximum WEH for a subsurface composed of the most hydrated mineral

Δt Radar two-way delay time 
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